Precision Total Pressure Measurements of Propyne with Propane, Propene, and Propadiene

Edward A. Kyser III* and David B. Manley

Savannah River Technology Center, Westinghouse Savannah River Company, P.O. Box 616, Aiken, South Carolina 29802, and Department of Chemical Engineering, University of Missouri–Rolla, Rolla, Missouri 65401

Experimental total pressure measurements of propyne mixed with propane, propene, and propadiene are presented for five isotherms from 253 to 353 K. Thermodynamically consistent vapor compositions and saturated phase densities are calculated using a cubic equation of state with three isothermal pure component parameters and two binary mixture parameters. The precision vapor-liquid equilibrium cell and experimental procedure which are particularly useful for measurements involving close boiling light hydrocarbons are described, and the experimental and modeled results are presented.

Introduction

The vapor-liquid equilibrium (VLE) behavior of acetylenic compounds in light hydrocarbon systems is poorly understood, with few data existing in the open literature. This class of compounds is known to commonly occur in petrochemical process streams as byproducts in many chemical processes. However, the reactions of acetylenic compounds and consequently the hazards posed by the presence of these compounds are well documented. Lacking accurate experimental data, it is difficult to predict how these compounds will behave in separation processes. Acetylenic compounds could be recovered as a product, but it is common practice to partially hydrogenate process streams in order to remove acetylenic compounds. Since the desired products in those streams are usually olefins or diolefins, a portion of the product is then lost in the process of eliminating the acetylenes. Decisions have to be made as to where and how much to hydrogenate. Accurate VLE predictions provide the ability to make more rational decisions in the design of separation processes.

Previous work with C3 hydrocarbons makes propyne a good choice for study. Higher molecular weight acetylenes are increasingly less stable, posing considerable safety risks. Accurate measurements of the acetylenic interactions in the C3 hydrocarbon system may prove useful to predict the VLE behavior of higher molecular weight acetylenes without incurring the safety risks associated with those compounds.

Experimental Section

Safety. Propyne and propadiene pose special safety problems beyond being flammable. Due to their unsaturated nature, both compounds are quite reactive. Propyne, as a primary alkyne, reacts with a number of metals including copper, silver, and mercury to form explosive metal acetylides. Both propyne and propadiene can undergo an explosive decomposition under pressures of 2-5 atm even in the absence of air. Higher molecular weight alkynes are far more unstable than propyne.

A number of references in the literature indicated possible hazard with use of acetylinic compounds with copper, silver, and mercury. However, Van Hook (1967) safely took vapor pressure measurements of propyne in a mercury manometer system up to pressures of 1000 mmHg. Rutledge (1969) is a comprehensive reference on the chemistry of acetylene compounds, but does not make statements about reactions with metals.

The explosive decomposition of propadiene and propyne was another area of concern. Rutledge (1969) and NFPA (1975) both list a number of references citing this hazard. Among them are Bondar et al. (1965), Yoshimine et al. (1967), Huston et al. (1970), Kuchta et al. (1964) and Vidaurri (1975). These references cited the hazards as being the ability to propagate a flame in the absence of oxygen at pressures of 2-5 atm. Several studies investigated stabilization by mixing in propene, 2-methylpropane, and other compounds. The risk for decomposition is greatest when the components are in a pure form.

The following precautions were taken to limit the risks of handling these compounds: (1) All stocks of propadiene and propyne were stored in a refrigerator/freezer. (2) All stocks of propyne were stored in stainless steel cylinders with stainless steel valves and fittings. (3) The amount of copper and silver left exposed to propyne vapor in the measurement cell was minimized. (4) Transfers of material were performed at low temperature/low pressure. (5) Distillations were done at low temperatures that kept the pressure below 1 atm. (6) Small amounts (approximately 2 g or less) of material were placed in the measurement cells.

Apparatus and Procedure. The total pressure technique requires the measurement of the temperature and pressure of a sample cell of known total volume with a known overall composition. The loaded measurement cells were placed in a temperature-controlled bath that was controlled between 253 and 353 K during this study. Maximum temperature gradients in the bath were less than 0.01 K. Bath temperature was measured with a standard platinum resistance thermometer utilizing a Mueller bridge and null detector system. Cross comparison with another standard platinum resistance thermometer indicated that temperature measurements in this study were within 0.01 K of IPTS-68. The manifold pressure that balanced the diaphragm against the measurement cell pressure was measured using a digital quartz pressure

^{*} To whom correspondence should be addressed at the Westinghouse Savannah River Co.

Figure 1. Total pressure measurement cell and transducer assembly.

gauge or a Ruska dead weight gauge. Ruska states the accuracy to be 0.04%. Pure component vapor pressure data were compared with literature values for propane, propene, and propyne and found to be within $\pm 0.2\%$ of what appeared to be reliable literature values.

The equipment and techniques developed to measure mixture vapor pressures drew heavily on past experiences with similar cells described by Barclay (1980), Flebbe (1980), and Burcham (1981). A welded cell design similar to that of Barclay was chosen to avoid problems with mechanical seals at the pressures of this study. Diaphragms were made from 316 and 316L annealed stainless steel diaphragm material ranging in thickness from 0.0010 to 0.0020 in. The measurement cell diameter was increased to 2.5 in. to increase the sensitivity of the cell. This caused additional difficulty in soldering the diaphragm between the halves of the measurement cell to seal the cell without damaging the diaphragm sensitivity to small pressure differentials. A total cavity depth of 0.035 in. was used. The pressure differential across the diaphragm was measured by sensing the position of the diaphragm with a pushrod/ferrite core assembly in the magnetic field of a transducer (above the temperature bath). The position of the diaphragm in each measurement cell was calibrated as a function of the pressure drop across the diaphragm and the null point determined as a percent of total diaphragm travel as the cell was under- and overpressurized. Pressure and temperature effects on the null point were small. The overall accuracy of measuring pressure using the Ruska gauge and these cells was estimated to be 0.1%.

Cell volumes ranged from 6.13 to 7.65 cm³. Each cell volume was determined by loading distilled water into an evacuated cell. The diaphragm cavity was estimated to be

on the order of 0.3 cm^3 . On the basis of duplicate measurements the uncertainty in the cell volume was estimated to be 0.01 cm^3 or less than 0.2%.

Evacuated measurement cells were loaded from 10% to 60% full of liquid hydrocarbon via a manifold and hand pump with purified degassed liquid phase components. The least volatile component was loaded first, and the mass of each component loaded into each cell was determined by the mass difference as determined on a large capacity beam balance with a sensitivity of 0.1 mg. A series of six cells was loaded and placed in the temperature bath. Each cell was attached to a nitrogen gas manifold where the pressure was adjusted with a hand pump and measured with the Ruska dead weight gauge or digital quartz pressure gauge previously described. The system was equilibrated, and measurements were taken for each cell. Five isotherms were measured in duplicate with each set of cells. The temperature was cycled such that the low temperatures were measured both at the start and at the end of the series in order to detect any chemical changes in the contents of the cells at the high temperatures.

Source Chemicals and Purification. Propane and propene in purities of 99.99% were available for this study. Propadiene (96% purity) from Burcham's work (1981, 1986) was available. Additional propadiene and propyne were obtained in purities of 96%. Purification of the propadiene and propyne was accomplished by performing batch distillations in a jacketed 1.52 m silvered distillation column filled with 6 mm Raschig rings at or slightly below atmospheric pressure. Composition was determined by a flame ionization detector (FID) gas chromatograph (GC) analysis of liquid phase samples. High purity propyne was prepared; however, the separation of butane from propadiene seemed to be limited by the apparatus. Successive batch distillations were unable to achieve a significant increase in purity. Pressurized distillation may have eliminated this problem, but would have entailed safety risks

Positive identification of the impurity peaks from the gas chromatagraph was accomplished by spiking samples with butane and 2-methylpropane and observing the unknown impurity peak that increased. Propane and propene retention times were determined directly. This identification process contradicted the results for the impurities in propadiene reported by Burcham (1981, 1986).

All chemicals were degassed to remove noncondensable gases by freezing in liquid nitrogen and evacuating the vapor space in the sample cylinder. Seven to ten freezeevacuate-thaw cycles were performed on each sample. Both vapor and liquid phase samples were analyzed by a gas chromatograph with a thermal conductivity detector (TCD) to detect air. These analyses indicated that the maximum air content of a liquid phase sample from any of the chemicals was less than 0.02 mol %. All loading of cells was performed from the liquid phase of the sample cylinder.

The final mole fraction purity of each of the purified chemicals is listed in Table 1. The propane and propene purities were determined by lot analyses by the manufacturer, and the propadiene and propyne purities were determined by GC/FID after distillation.

Liquid phase samples from loaded measurement cells of each pure component were analyzed by GC/TCD after being subjected to the full range of temperatures and pressures of the measurement. No evidence of significant air introduction during the loading process nor decomposition during the measurement process was observed.

758 Journal of Chemical and Engineering Data, Vol. 40, No. 4, 1995

Table 1. Mole Fraction Purity of Raw Chemicals after Purification

	propane	propene	propadiene	propyne	butane	2-methylpropane	ethane
propane propene	0.999 9 0.000 1	0.999 9	0.064.95	0.002.81	0.021.00	0.000.01	0.0001
propadiene propyne	0.000 07	0.000 25	0.964 85	0.003 81 0.999 76	0.031 00	0.000 01	

Table 2. Temperature-Adjusted Results for Propane + Propyne with Values for Liquid Mole Fractions^a

T/K		P/kPa		propane	propadiene	propyne	butane
253.15	115.45	115.49	115.61		0.000 16	0.999 76	0.000 08
	115.63				0.000 16	0.999 76	0.000 08
278.15	302.16	302.27	302.46		0.000 16	0.999 76	0.000 08
	302.62	303.27			0.000 16	0.999 76	0.000 08
303.15	663.31	663.62	663.89		0.000 16	0.999 76	0.000 08
	664.27				0.000 16	0.999 76	0.000 08
328.15	1279.07	1279.38	1279.49		0.000 16	0.999 76	0.000 08
353.15	2239.27	2239.70	2240.05		0.000 16	0.999 76	0.000 08
	2240.21				0.000 16	0.999 76	0.000 08
253.15	163.41	164.43		$0.108\ 56$	$0.000\ 14$	$0.891\ 23$	0.000 07
278.15	388.98	389.30	390.42	$0.108\ 12$	0.000 14	$0.891\ 67$	0.000 07
303.15	801.17	802.27		$0.107\ 72$	$0.000\ 14$	0.892~07	0.000 07
328.15	1479.08	1480.95		$0.107\ 48$	$0.000\ 14$	$0.892\ 31$	0.000 07
353.15	2517.49	2518.41		$0.107\ 60$	$0.000\ 14$	$0.892\ 19$	0.000 07
253.15	208.14	208.34		$0.295\ 72$	$0.000\ 11$	$0.704\ 11$	0.000 05
278.15	476.01	477.02	477.32	$0.292\;58$	$0.000\ 11$	$0.707\ 26$	$0.000\ 05$
303.15	949.36	949.57		0.288 83	$0.000\ 11$	$0.711\ 00$	0.000 05
328.15	1705.80	1706.30		$0.284\ 88$	0.000 11	0.714 95	0.000 06
353.15	2837.57	2839.29		$0.281\ 24$	0.000 11	$0.718\ 59$	0.000 06
253.15	218.81	218.84		0.366 61	$0.000\ 10$	$0.633\ 24$	$0.000\ 05$
278.15	497.66	497.96		$0.361\ 38$	0.000 10	$0.638\ 47$	0.000 05
303.15	987.08	987.81		$0.354\ 86$	$0.000\ 10$	0.644 98	$0.000\ 05$
328.15	1765.66	1765.70		$0.347\ 61$	$0.000\ 10$	$0.652\ 24$	0.000 05
353.15	2923.34	2924.40		0.340 09	0.000 10	0.659 75	0.000 06
253.15	228.15	228.18		$0.451\ 59$	0.000 09	$0.548\ 28$	0.000 04
278.15	518.89	519.85	519.95	$0.450\ 32$	0.000 09	0.549~55	0.000~04
303.15	1027.54	1027.86		0.448 89	0.000 09	0.550~98	$0.000\ 04$
328.15	1834.30	1834.94		$0.447\ 60$	0.000 09	$0.552\ 27$	0.000~04
353.15	3035.75	3038.91		0.447~08	0.000 09	0.552~79	0.000~04
253.15	229.88	230.00		0.466 29	0.000 09	$0.533\ 58$	$0.000\ 04$
278.15	521.57	522.26	523.64	$0.465\ 15$	0.000 09	$0.534\ 72$	0.000~04
	524.01						
303.15	1033.50	1035.01		$0.463\ 87$	0.000 09	$0.536\ 00$	0.000~04
328.15	1844.06	1845.65		0.462.76	0.000 09	$0.537\ 11$	0.000 04
353.15	3046.54	3050.71		$0.462\ 43$	0.000 09	0.537 44	0.000 04
253.15	242.79	243.43		0.629 48	0.000 06	0.370 43	0.000 03
278.15	550.77	552.20		0.628 66	0.000 06	$0.371\ 25$	0.000 03
303.15	1086.96	1087.05	1087.21	0.62778	0.000 06	$0.372\ 13$	0.000 03
328.15	1933.20	1933.36		0.627 08	0.000 06	0.372 83	0.000 03
353.15	3188.27	3188.85		0.626 90	0.000 06	0.373 01	0.000 03
253.15	244.43	245.74		20.644 33	0.000 06	0.355 59	0.000 03
278.15	553.52	553.58	555.74	0.642 65	0.000 06	0.357 27	0.000 03
303.15	1091.90	1092.49	1092.92	0.640 73	0.000 06	0.359 18	0.000 03
328.15	1940.00	1940.11		0.638 96	0.000.06	0.360 95	0.000 03
353.15	3197.56	3198.41		0.637 59	0.000.05	0.362 31	0.000 03
253.15	246.27	246.47		0.683 75	0.000 05	0.310 10	0.000 02
278.15	007.79	008.23		0.000 10	0.000 05	0.310 78	0.000 02
303.15	1098.16	1098.31		0.002.00	0.000 05	0.317.37	0.000 02
328.10	1949.99	1900.02		0.662 17	0.000 05	0.317 73	0.000.03
303.10	3213.90	3214.10		0.002 19	0.000 05	0.317 74	0.000.03
200.10 979.15	440.00 569 91	440.00 569 27		0.730 49	0.000 04	0.200 10	0.000.02
210.10	1105.02	1106 11		0.739 43	0.000 04	0.200.01	0.000 02
303.10	1960 89	1961 06		0 739 04	0.000 04	0.260.90	0.000.02
353 15	3227 26	3227 34		0.739 29	0.00004	0.260 65	0.00002
253.15	244.85	244.93		1.000 00	0.000 00	0.000 00	0.000 00
278.15	550.95	551.73	552.70	1.000 00			
303.15	1080.38	1081.51		1.000 00			
328.15	1909.12	1909.55		1.000 00			
353.15	3133.05	3133.05		1.000 00			

^a Multiple pressures result from independent T, P equilibrations with the same loaded cells adjusted to the target temperature.

Data Reduction. Total pressure measurements from each cell were adjusted from the experimental temperature to the target value of temperature using a Wagner equation fit (Ambrose, 1986) of five isotherms measured in this study. Deviations between the experimentally determined pressure and the value predicted by the equation at the experimental temperatures were added to the pressure predicted from the equation at the target temperature. This kept any lack of fit of the equation from affecting the corrected values of pressure. One temperature adjustment

Table 3. Temperature-Adjusted Results for Propene + Propyne with Values for Liquid Mole Fractions^a

T/K	P/k	Pa	propane	propene	propadiene	propyne	butane
253.15	115.45	115.49	0.000 00		0.000 16	0.999 76	0.000 08
200110	115.61	115.63	0.000.00		0.000 16	0.999 76	0.000.08
278.15	302.16	302.27	0.000.00		0.000 16	0.999 76	0.000 08
2.0.10	302.46	302.62	0.000 00		0.000 16	0.999 76	0.000 08
	303.27	002.02	0.000 00		0.000 16	0.999 76	0.000 08
303.15	663.31	663.62	0.000 00		0.000 16	0.999 76	0.000 08
	663.89	664.27	0.000 00		0.000 16	0.999 76	0.000 08
328.15	1279.07	1279.38	0.000 00		0.000 16	0.999 76	0.000 08
-	1279.49		0.000 00		0.000 16	0.999 76	0.000 08
353.15	2239.27	2239.70	0.000 00		0.000 16	0.999 76	0.000 08
	2240.05	2240.21	0.000 00		0.000 16	0.999 76	0.000 08
253.15	145.87	146.23	0.000 01	0.096 48	0.000 14	0.903 30	0.000 07
278.15	358.93	359.13	0.000 01	0.094 43	0.000 14	0.905 35	0.000 07
303.15	755.13	755.49	0.000 01	0.092 03	$0.000\ 14$	0.907 75	0.000 07
328.15	1413.70	1414.22	0.000 01	0.089 50	$0.000\ 14$	0.910 28	0.000 07
353.15	2425.14	2425.55	0.000 01	0.087 05	0.000 14	0.912 73	0.000 07
253.15	201.75	202.32	0.000 03	0.311 06	0.000 11	0.688~74	0.000 05
278.15	467.46	467.79	0.000 03	0.306 65	0.000 11	0.693 15	0.000 05
303.15	938.19	938.82	0.000 03	$0.301\ 23$	0.000 11	0.698 58	0.000 05
328.15	1693.39	1694.83	0.000 03	0.295 16	0.000 11	0.704~64	0.000 05
353.15	2824.11	2825.03	0.000 03	0.288 89	0.000 11	0.710 92	0.000 06
253.15	235.99	237.62	0.000 05	0.491 39	0.000 08	$0.508\ 44$	0.000 04
278.15	536.67	537.85	0.000 05	$0.487\ 82$	0.000 08	$0.512\ 01$	0.000 04
303.15	1060.79	1061.00	0.000 05	0.483 39	0.000 08	$0.516\ 44$	0.000~04
328.15	1889.78	1890.83	0.000 05	0.478 40	0.000 08	$0.521\ 43$	0.000 04
353.15	3121.90	3128.37	0.000 05	$0.473\ 36$	0.000 08	$0.526\ 47$	0.000 04
253.15	267.45	267.73	$0.000\ 07$	0.697 88	0.000 05	0.301 98	$0.000\ 02$
278.15	600.85	601.16	$0.000\ 07$	0.696 78	0.000 05	0.303 08	$0.000\ 02$
303.15	1175.58	1176.05	$0.000\ 07$	0.695 53	0.000 05	0.304 33	$0.000\ 02$
328.15	2078.72	2079.41	0.000 07	0.694~36	$0.000\ 05$	$0.305\ 50$	$0.000\ 02$
353.15	3414.04	3414.46	$0.000\ 07$	0.693 95	$0.000\ 05$	$0.305\ 91$	$0.000\ 02$
253.15	294.79	295.30	0.000 09	0.900 01	$0.000\ 02$	0.099 88	$0.000\ 01$
278.15	655.17	655.60	0.000 09	0.898 90	$0.000\ 02$	$0.100\ 98$	$0.000\ 01$
303.15	1269.50	1270.32	0.000 09	0.89753	$0.000\ 02$	$0.102\ 35$	$0.000\ 01$
328.15	2227.42	2228.17	0.000 09	0.896 00	$0.000\ 02$	0.103 89	$0.000\ 01$
353.15	3637.62	3638.03	0.000 09	0.894~71	$0.000\ 02$	$0.105\ 18$	$0.000\ 01$
253.15	305.95	306.00	0.000 10	0.999 90			
	305.96		$0.000\ 10$	0.999 90			
278.15	676.57	676.65	0.000 10	0.999 90			
303.15	1305.71	1306.19	0.000 10	0.999 90			
328.15	2283.22	2283.40	0.000 10	0.999 90			
	2282.69		0.000 10	0.999 90			
353.15	3710.01	3716.45	0.000 10	0.999 90			

^a Multiple pressures result from independent T, P, equilibrations with the same loaded cells adjusted to the target temperature.

was 1.02 K, with the rest less than 0.2 K and most less than 0.03 K. These adjustments resulted in pressure adjustments of less than 0.4% and typically less than 0.1% except for the one value that was adjusted 3.5-4%. The error introduced into the results by this adjustment was not generally significant.

Measurement of temperature T, pressure P, moles of each component loaded, and cell volume V^{cell} completely determines the system. Therefore, an appropriate thermodynamic model can be applied along with equilibrium constraints and a material balance to solve for all the other variables. This allows the experimental results to be converted into T, P, x_i , and y_i results for each data point. VLE behavior throughout the composition range can also be predicted within the ability of the thermodynamic model chosen. In this study the Peneloux equation of state (EOS) (Peneloux et al., 1982) with mixing rules as suggested by Panagiotopoulos and Reid (1986) was used (eqs 1-4). A flash calculation (eq 5) and a material balance for each component (eq 6) completed the specification of the system.

$$P = \frac{RT}{V - b} - \frac{a}{(V + c)(V + b + 2c)}$$
(1)

where a, b, and c are pure component EOS parameters, V is the molar volume, and R is the ideal gas constant.

The Panagiotopoulos modifications of the mixing rules are

$$a = \sum_{i} \sum_{j} x_{i} x_{j} ((a_{i} a_{j})^{1/2} (1 - k_{i,j}) + (2b/VRT) x_{i} \lambda_{i,j}) \quad (2)$$
$$k_{i,j} = k_{j,i} \quad \lambda_{i,j} = -\lambda_{j,i}$$

$$b = \sum_{i} x_{i} b_{i} \tag{3}$$

$$c = \sum_{i} x_{i} c_{i} \tag{4}$$

$$l = \frac{V^{\rm v} - V^{\rm cell} / N^{\rm cell}}{V^{\rm v} - V^{\rm l}}$$
(5)

$$x_{i} = \frac{z_{i}}{l - K_{i}(1 - l)}$$
(6)

where k_{ij} and λ_{ij} are EOS binary mixture parameters, l is the fraction of total moles in the liquid phase, N is moles,

	Table 4.	Temperature	-Adjusted Resu	ılts for Pro	padiene +	Propyne with	Values for Lic	uid Mole Fractions
--	----------	-------------	----------------	--------------	-----------	---------------------	----------------	--------------------

T/\mathbf{K}	P/kPa		propane	propene	propadiene	propyne	butane	2-methylpropane
253.15	115.45	115.49	0.000 00		0.000 16	0.999 76	0.000 08	
	115.61	115.63	0.000 00		0.000 16	0.999 76	0.000 08	
278.15	302.16	302.27	0.000 00		0.000 16	0.999 76	0.000 08	
	302.46	302.62	0.000 00		$0.000\ 16$	0.999 76	0.000 08	
	303.27		0.000 00		$0.000\ 16$	0.999 76	0.000 08	
303.15	663.31	663.62	0.000 00		$0.000\ 16$	0.999 76	$0.000\ 08$	
	663.89	664.27	0.000 00		$0.000\ 16$	0.999 76	0.000 08	
328.15	1279.07	1279.38	0.000 00		$0.000\ 16$	0.999 76	0.000 08	
	1279.49		0.000 00		$0.000\ 16$	0.999 76	0.000 08	
353.15	2239.27	2239.70	$0.000\ 00$		0.000 16	0.999 76	0.000 08	
	2240.05	2240.21	0.000 00		0.000 16	0.999 76	0.000 08	
253.15	125.13	125.13	$0.000\ 01$	$0.000\ 02$	0.096 19	0.900 60	$0.003\ 18$	0.000 00
278.15	321.43	321.56	$0.000\ 01$	$0.000\ 02$	$0.095\ 53$	$0.901\ 27$	$0.003\ 17$	0.000 00
303.15	695.83	695.92	$0.000\ 01$	$0.000\ 02$	0.09473	$0.902\ 08$	$0.003\ 16$	0.000 00
328.15	1328.99	1329.03	$0.000\ 01$	$0.000\ 02$	$0.093\ 81$	0.902~99	$0.003\ 16$	0.000 00
353.15	2310.46	2310.53	$0.000\ 01$	$0.000\ 02$	$0.092\ 86$	0.903~92	0.003 19	0.000 00
253.15	141.64	141.80	$0.000\ 02$	$0.000\ 07$	$0.279\ 19$	$0.711\ 64$	$0.009\ 08$	0.000 00
278.15	354.55	354.66	$0.000\ 02$	$0.000\ 07$	$0.278\ 26$	$0.712\ 56$	$0.009\ 08$	0.000 00
303.15	752.94	753.00	$0.000\ 02$	$0.000\ 07$	$0.277\ 13$	$0.713\ 67$	$0.009\ 10$	0.000 00
328.15	1416.83	1416.96	$0.000\ 02$	$0.000\ 07$	$0.275\ 93$	$0.714\ 82$	$0.009\ 16$	0.000 00
353.15	2436.27	2436.31	$0.000\ 02$	$0.000\ 07$	$0.274\ 87$	0.715~79	$0.009\ 26$	0.000 00
253.15	155.68	155.69	0.000 03	$0.000\ 12$	0.462~69	$0.522\ 18$	$0.014\ 97$	$0.000\ 01$
278.15	382.62	382.70	0.000 03	$0.000\ 12$	$0.462\ 07$	$0.522\ 77$	0.014~99	0.000 01
303.15	801.38	801.45	0.000 03	$0.000\ 12$	$0.461\ 35$	$0.523\ 45$	$0.015\ 05$	0.000 01
328.15	1491.34	1491.59	0.000 03	$0.000\ 12$	0.460~64	$0.524\ 07$	$0.015\ 14$	0.000 01
353.15	2542.37	2542.53	0.000 03	$0.000\ 12$	$0.460\ 13$	$0.524\ 45$	$0.015\ 26$	0.000 01
253.15	167.91	167.92	$0.000\ 05$	$0.000\ 17$	$0.658\ 58$	$0.319\ 80$	$0.021\ 39$	0.000 01
278.15	406.62	406.71	$0.000\ 05$	$0.000\ 17$	0.657~56	$0.320\ 68$	$0.021\ 53$	0.000 01
303.15	842.13	842.28	$0.000\ 05$	$0.000\ 17$	$0.656\ 28$	$0.321\ 70$	0.021~79	0.000 01
328.15	1552.78	1552.80	$0.000\ 05$	$0.000\ 16$	$0.654\ 87$	0.32269	$0.022\ 22$	$0.000\ 01$
353.15	2624.77	2627.16	$0.000\ 05$	$0.000\ 16$	$0.653\ 40$	$0.323\ 56$	$0.022\ 83$	$0.000\ 01$
253.15	179.26	179.42	$0.000\ 06$	$0.000\ 23$	$0.864\ 88$	$0.106\ 90$	0.027~91	0.000 01
278.15	428.14	428.20	$0.000\ 06$	$0.000\ 23$	0.864 69	$0.107\ 00$	$0.028\ 01$	$0.000\ 01$
303.15	877.03	877.37	$0.000\ 06$	$0.000\ 23$	$0.864\ 43$	$0.107\ 10$	$0.028\ 17$	$0.000\ 01$
328.15	1603.52	1603.90	$0.000\ 06$	$0.000\ 22$	$0.864\ 12$	$0.107 \ 19$	0.028 39	0.000 01
353.15	2693.29	2695.33	0.000 06	$0.000\ 22$	0.863 75	$0.107\ 30$	$0.028\ 65$	$0.000\ 01$
253.15	183.59	183.66	$0.000\ 07$	$0.000\ 25$	0.963 95	0.003 84	$0.031\ 88$	0.000 01
278.15	436.14	436.30	$0.000\ 07$	$0.000\ 24$	0.963 05	0.003 87	0.032~76	0.000 01
303.15	889.49	889.65	$0.000\ 07$	$0.000\ 23$	0.961 40	0.003 89	$0.034\ 40$	0.000 01
328.15	1620.14	1620.43	0.000 06	$0.000\ 22$	0.958 50	$0.003 \ 91$	0.037 29	$0.000\ 02$
353.15	2714.53	2715.48	0.000 06	$0.000\ 21$	$0.953\ 37$	0.003 96	$0.042\ 38$	$0.000\ 02$

^a Multiple pressures result from independent T, P equilibrations with the same loaded cells adjusted to the target temperature.

Figure 2. Comparison of the Raoult's law pressure deviations for experimental data and the model for propane (1) + propyne (2): dotted circle, 253.15 K; dotted square, 278.15 K; dotted triangle, 303.15 K; dotted inverted triangle, 328.15 K; dotted tilted square, 353.15 K.

the superscripts v, l and cell refer to the vapor phase, liquid phase, and the overall cell, respectively, z_i refers to the overall mole fraction for both phases combined, and $K_i = y_i/x_i$.

Figure 3. Comparison of the Raoult's law pressure deviations for experimental data and the model for propene (1) + propyne (2): dotted circle, 253.15 K; dotted square, 278.15 K; dotted triangle, 303.15 K; dotted inverted triangle, 328.15 K; dotted tilted square, 353.15 K.

Pure component a_i , b_i , and c_i were fit at each isotherm to the best pure component physical property values of saturated vapor and liquid molar volumes available and the saturated pressure values of this study. Each set of

Table 5. Calculated Liquid and Vapor Mole Fractions x_1 and y_1 , Pressure, Liquid Molar Volume V^1 , Vapor Compressibility Z, and Relative Volatility α for Propane (1) + Propyne (2)

Compre	SS10111	ty Z, ar		e volatility a r	or Prop	bane (1)	+ Propyn	ie (2)					
T/K	x_1	y_1	P/kPa	$V^{1/(cm^{3} mol^{-1})}$	Ζ	α	<i>T/</i> K	x_1	y_1	P/kPa	$V^{1/(cm^{3} mol^{-1})}$	Ζ	α
253.15	0.00	0.000	115.56	59.9	0.950	5.317	328.15	0.00	0.000	1279.18	71.4	0.813	2.283
253.15	0.05	0.204	139.62	61.4	0.946	4.856	328.15	0.05	0.102	1378.06	73.0	0.801	2.154
253.15	0.10	0.330	159.54	62.8	0.942	4.427	328.15	0.10	0.184	1464.93	74.8	0.789	2.033
253.15	0.15	0.416	176.02	64.2	0.938	4.029	328.15	0.15	0.253	1541.39	76.5	0.778	1.920
253.15	0.20	0.478	189.54	65.6	0.935	3.661	328.15	0.20	0.312	1608.75	78.3	0.768	1 814
253.15	0.25	0.526	200.71	66.8	0.933	3.322	328.15	0.25	0.364	1668.05	80.1	0 759	1 716
253.15	0.30	0.563	209.88	68.0	0.931	3.012	328.15	0.30	0.411	1720.38	81.9	0.751	1 625
253 15	0.35	0.595	217 46	69.2	0.929	2 727	328 15	0.35	0.453	1766 51	83.7	0.743	1.540
253.15	0.40	0.622	223 80	70.3	0.928	2 467	328.15	0.40	0.494	1807.05	85.5	0.736	1 462
253 15	0 45	0.646	229 18	71.3	0.927	2 230	328 15	0.45	0.532	1842.62	87.3	0.730	1 389
253 15	0.50	0.668	233 73	72.3	0.926	2 016	328 15	0.50	0.569	1873 51	89.0	0.700	1.321
253 15	0.55	0.690	237.66	73.2	0.925	1.821	328 15	0.55	0.606	1899.85	90.7	0.719	1.021
253 15	0.60	0.712	241 04	74.0	0.925	1 645	328 15	0.60	0.643	1921.84	92.3	0.715	1 1 9 9
253 15	0.65	0 734	243.94	74.8	0.020	1.040	328 15	0.65	0.620	1929.36	03.8	0.711	1 1 1 1 1
253 15	0.00	0.759	246.35	75.5	0.024	1 9/5	328 15	0.00	0.000	1052.00	95.0	0.711	1 003
253 15	0.75	0.785	248.00	76.3	0.925	1 919	328.15	0.75	0.758	1960 18	96.5	0.705	1.000
253 15	0.75	0.100	240.21	76.9	0.025	1 106	328.15	0.75	0.100	1962.97	90.0 07 6	0.703	0.000
253.15	0.85	0.810	249.40	77.6	0.920	1,100	328.15	0.85	0.000	1050 77	91.0	0.704	0.555
253.15	0.00	0.001	200.00	78.9	0.920	0.010	328.15	0.00	0.044	1050 22	90.0	0.703	0.500
200.10	0.90	0.032	243.32	79.9	0.927	0.919	999 15	0.90	0.052	1099 77	100.0	0.703	0.910
200.10	1.00	1 000	247.94	70.5	0.920	0.040	020.10 999.15	1.00	1 000	1000 27	100.0	0.704	0.011
200.10	0.00	0.000	244.50	62.0	0.531	0.777	320.13 959 15	0.00	0.000	1909.37	795	0.700	1 000
270.10	0.00	0.000	946 90	64.4	0.917	9,001	95915	0.00	0.000	2239.09	10.0	0.717	1.030
270.10	0.00	0.100	340.35	65.0	0.910	0.000	000.10 959.15	0.00	0.004	2313.09	00.0	0.701	1.744
270.10	0.10	0.200	419.60	67.9	0.904	3.200	000.10 959.15	0.10	0.100	2493.97	04.0	0.000	1.003
210.10	0.10	0.340	413.09	01.0	0.090	0.000 0.757	000.10	0.15	0.219	2602.10	00.1	0.072	1.007
270.10	0.20	0.400	405.41	70.0	0.000	2.707	000.10 959.15	0.20	0.270	2099.23	01.0	0.000	1.010
270.10	0.20	0.400	401.20	70.0	0.009	2.000 0.999	000.10 959.15	0.20	0.320	2700.31	90.0	0.040	1.400
270.10	0.30	0.000	419.14	71.4	0.000	2.000	000.10 959.15	0.30	0.373	2004.29	92.0	0.032	1.009
270.10	0.35	0.000	490.00	72.0	0.004	1 001	959 15	0.30	0.410	2903.99	90.0	0.020	1.002
270.10	0.40	0.009	509.11	75.9	0.019	1.901	252.10	0.40	0.401	2990.90	90.0	0.009	1.200
270.10	0.40	0.033	520.70	76.9	0.077	1.027	959 15	0.40	0.502	3030.35	100.7	0.099	1.202
270.10	0.50	0.020	530.51	70.2	0.070	1.007	959 15	0.50	0.543	3139.02	103.3	0.000	1.100
270.10	0.00	0.000	535.72	79.4	0.073	1.000	252.15	0.00	0.004	9171 99	100.9	0.001	1.140
270.10	0.00	0.004	559 51	70.4	0.072	1 999	959 15	0.00	0.020	2106.06	100.4	0.070	1.111
270.10	0.00	0.712	559 54	10.0 90.9	0.071	1.002	959 15	0.00	0.007	3130.30	110.7	0.000	1.077
278.15	0.75	0.742	562.04	91 1	0.070	1.200	959 15	0.75	0.703	3214.02	112.0	0.501	1.040
270.10	0.70	0.774	564.40	91.0	0.070	1.141	959 15	0.75	0.700	2005 27	114.0	0.000	0.000
278 15	0.85	0.805	564.92	82.6	0.870	0.001	353 15	0.85	0.750	3017 09	110.0	0.000	0.990
278.15	0.00	0.041	563 16	62.0 63.3	0.870	0.500	353 15	0.00	0.040	9100 51	117.1	0.552	0.304
278 15	0.00	0.001	559.10	84.0	0.872	0.505	353 15	0.50	0.004	3171 66	118.9	0.552	0.000
278 15	1 00	1 000	551 79	84.6	0.874	0.040	353 15	1.00	1 000	3133.05	110.2	0.556	0.910
303 15	0.00	0.000	663.69	66.6	0.874	2 914	000.10	1.00	1.000	0100.00	110.1	0.000	0.001
303 15	0.05	0.125	732 43	68.1	0.864	2.014 2.712							
303 15	0.00	0.120	791 45	69.6	0.856	2.112							
303 15	0.15	0.210	842 13	71 1	0.848	2 356							
303 15	0.10	0.254	885.91	79.7	0.841	2.000							
303 15	0.20	0.000	923 69	74.9	0.834	2.150							
303 15	0.20	0.451	956 51	75 7	0.004	1 010							
303 15	0.35	0.401	985.05	77.1	0.020	1 796							
303.15	0.00	0.492	1009.00	78.6	0.024	1.691					*		
303 15	0.45	0.563	1031 66	80.0	0.020	1 576							
303 15	0.50	0.500	1050 49	81.4	0.819	1 478							
303 15	0.55	0.629	1066.69	827	0.812	1 388							
303 15	0.60	0.662	1080.34	84.0	0.807	1 304							
303 15	0.65	0.695	1091 58	85 1	0.805	1 226							
303 15	0.70	0.729	1100 20	86.2	0.803	1.153							
303 15	0.75	0.765	1106.06	87.3	0.802	1.086							
303.15	0.80	0.804	1108.95	88.2	0.801	1.022							
303.15	0.85	0.845	1108.47	89.1	0.801	0.963							
303.15	0.90	0.891	1104 06	89.8	0.802	0.907							
303.15	0,95	0.942	1095.16	90.5	0.803	0.854							

isothermal mixture data was then fit to two mixture constants, k_{ij} and λ_{ij} . Two mixture parameters were used because the fit of this data within experimental error could not be done with a single mixture parameter. The same values for pure and mixture parameters were used for both the liquid and vapor phases. Both the pure component parameters and the mixture parameters were regressed with a finite difference Levenberg–Marquardt algorithm to minimize the sum of the squares of the relative difference between the experimentally determined pressures and

91.1

0.805

0.804

1080.96

303.15 1.00 1.000

those predicted by the model and parameter values as shown in eq 7, where k = 1 to the total number of data

$$f(x) = \sum_{k} \frac{(P_{\exp} - P_{\text{model}}(a_i, b_i, c_i, k_{i,j}, \lambda_{i,j}))}{P_{\exp}}$$
(7)

points for the isotherm. All isothermal data points for each binary mixture were regressed together. Due to the impurities present in the propadiene used for this study,

Table 6. Calculated Liquid and Vapor Mole Fractions x_1 and y_1 , Pressure, Liquid Molar Volume V^1 , Vapor Compressibility Z, and Relative Volatility α for Propene (1) + Propyne (2)

Compre	SS1D111	ty z, ar	a Relativ	e volatility u l	or rrop	ene (1)	+ rropyn	e (2)					
T/K	<i>x</i> ₁	<i>y</i> 1	P/kPa	<i>V</i> ¹ /(cm ³ mol ⁻¹)	Ζ	α	T/K	x_1	<i>y</i> 1	P/kPa	$V^{1/(cm^{3} mol^{-1})}$	Ζ	α
253.15	0.00	0.000	115.56	59.9	0.950	3.817	328.15	0.00	0.000	1279.18	71.4	0.813	1.986
253.15	0.05	0.162	132.10	60.8	0.947	3.680	328.15	0.05	0.092	1358.06	72.4	0.804	1.934
253.15	0.10	0.283	147.55	61.7	0.945	3.545	328.15	0.10	0.173	1432.87	73.5	0.795	1.882
253.15	0.15	0.376	161.82	62.6	0.943	3.410	328.15	0.15	0.244	1503.88	74.6	0.787	1.831
253.15	0.20	0.450	175.13	63.4	0.940	3.278	328.15	0.20	0.308	1571.32	75.7	0.779	1.781
253.15	0.25	0.512	187.54	64.2	0.938	3.147	328.15	0.25	0.366	1635.30	76.9	0.770	1.732
253.15	0.30	0.564	199.05	65.0	0.936	3.017	328.15	0.30	0.419	1696.11	78.0	0.763	1.684
253.15	0.35	0.609	209.74	65.8	0.934	2.890	328.15	0.35	0.468	1753.89	79.2	0.755	1.637
253.15	0.40	0.648	219.80	66.5	0.932	2.765	328.15	0.40	0.515	1808.84	80.5	0.747	1.591
253.15	0.45	0.684	229.18	67.2	0.931	2.642	328.15	0.45	0.559	1861.10	81.7	0.740	1.546
253.15	0.50	0.716	238.01	67.9	0.929	2.522	328.15	0.50	0.601	1910.95	83.0	0.733	1.503
253.15	0.55	0.746	246.28	68.5	0.928	2.404	328.15	0.55	0.641	1958.39	84.2	0.727	1.462
253.15	0.60	0.774	254.21	69.1	0.927	2.288	328.15	0.60	0.681	2003.62	85.5	0.720	1.421
253.15	0.65	0.802	261.66	69.7	0.925	2.175	328.15	0.65	0.720	2046.64	86.7	0.714	1.382
253.15	0.70	0.828	268.83	70.3	0.924	2.065	328.15	0.70	0.758	2087.53	87.9	0.708	1.345
253.15	0.75	0.855	275.65	70.8	0.923	1.958	328.15	0.75	0.797	2126.21	89.1	0.702	1.308
253.15	0.80	0.881	282.20	71.3	0.923	1.853	328.15	0.80	0.836	2162.61	90.3	0.697	1.274
253.15	0.85	0.909	288.55	71.7	0.922	1.752	328.15	0.85	0.875	2196.67	91.4	0.692	1.240
253.15	0.90	0.937	294.61	72.2	0.922	1.654	328.15	0.90	0.916	2228.25	92.5	0.687	1.208
253.15	0.95	0.967	300.47	72.6	0.921	1.559	328.15	0.95	0.957	2257.21	93.5	0.683	1.177
253.15	1.00	1.000	305.99	73.0	0.921	1.467	328.15	1.00	1.000	2283.13	94.4	0.679	1.147
278.15	0.00	0.000	302.54	63.0	0.917	2.900	303.10	0.00	0.000	2239.09	78.0	0.717	1,000
278.15	0.00	0.131	333.98	03.9	0.913	2.007	303.10	0.00	0.079	2350.70	79.0 91.1	0.700	1 5 90
270.10	0.10	0.230	202.22	04.0 65.7	0.909	2.700	353 15	0.10	0.150	2407.29	82.6	0.034	1.565
278.10	0.10	0.320	390.00 416 59	66 5	0.905	2.000	353.15	0.15	0.215 0.275	2000.40	84.1	0.082	1.501
270.10	0.20	0.391	410.56	67.4	0.901	2.072	353 15	0.20	0.210	2750.80	85.7	0.659	1 477
270.10	0.20	0.400	440.04	68.3	0.001	2.400	353 15	0.20	0.382	2840 43	87 4	0.648	1 441
270.10	0.30	0.500	405.15	69.1	0.000	2.001	353 15	0.35	0.431	2926 20	89.1	0.637	1 406
278.15	0.00	0.597	504 42	69.9	0.887	2 218	353 15	0.00	0.478	3008.25	90.9	0.626	1.372
278 15	0.45	0.636	523 24	70.7	0.884	2 134	353.15	0.45	0.523	3086.85	92.8	0.615	1.339
278 15	0.50	0.600	541 10	71.5	0.881	2.052	353.15	0.50	0.567	3161.94	94.8	0.604	1.308
278.15	0.55	0.707	557.99	72.3	0.878	1.972	353.15	0.55	0.610	3233.78	96.8	0.594	1.277
278.15	0.60	0.740	573.99	73.1	0.876	1.893	353.15	0.60	0.652	3302.17	98.9	0.583	1.248
278.15	0.65	0.771	589.23	73.8	0.874	1.816	353.15	0.65	0.694	3367.33	101.0	0.573	1.221
278.15	0.70	0.803	603.77	74.5	0.872	1.741	353.15	0.70	0.736	3428.97	103.2	0.563	1.195
278.15	0.75	0.833	617.63	75.2	0.870	1.668	353.15	0.75	0.778	3486.95	105.3	0.554	1.170
278.15	0.80	0.865	630.80	75.8	0.868	1.596	353.15	0.80	0.821	3541.22	107.4	0.545	1.147
278.15	0.85	0.896	643.35	76.4	0.866	1.525	353.15	0.85	0.865	3591.27	109.4	0.536	1.126
278.15	0.90	0.929	655.21	77.0	0.865	1.456	353.15	0.90	0.909	3636.92	111.3	0.528	1.106
278.15	0.95	0.964	666.31	77.5	0.864	1.389	353.15	0.95	0.954	3677.73	113.1	0.521	1.087
278.15	1.00	1.000	676.65	78.0	0.863	1.323	353.15	1.00	1.000	3713.24	114.7	0.515	1.070
303.15	0.00	0.000	663.69	66.6	0.874	2.390							
303.15	0.05	0.109	715.95	67.5	0.867	2.319							
303.15	0.10	0.200	765.18	68.5	0.861	2.248							
303.15	0.15	0.278	811.44	69.4	0.855	2.179							
303.15	0.20	0.346	855.09	70.4	0.849	2.112							
303.15	0.25	0.405	896.25	71.4	0.844	2.046							
303.15	0.30	0.459	935.07	72.3	0.838	1.981							
303.15	0.35	0.508	971.75	73.3	0.833	1.917							
303.15	0.40	0.503	1006.00	75.2	0.020	1.000							
303.13 909.15	0.40	0.090	1039.30	10.0	0.023	1.790							
303.15	0.50	0.030 0.679	1100.02	10.Z 77 0	0.019	1.730							
30315 30315	0.00	0.072	1100.27	11.4 79.1	0.014	1 692							
303.15	0.00	0.709	1155 35	79.1	0.806	1 568							
303.15	0.00	0.790	1180.00	80.0	0.803	1.515							
303 15	0.75	0.815	1205 13	80.8	0.799	1.464							
303 15	0.80	0.850	1228 16	81.7	0.796	1.413							
303 15	0.85	0.886	1249.81	82.5	0.793	1.365							
303.15	0.90	0.922	1270.08	83.2	0.790	1.317							
303.15	0.95	0.960	1288.84	83.9	0.788	1.271							
303.15	1.00	1.000	1305.94	84.6	0.786	1.226							

the fitting of the pure component parameters for propadiene was dependent on the mixture parameters for propadiene + propyne. This required an iteration between the fitting of the pure component parameters and the fitting of the mixture parameters until the changes in each parameter ceased to significantly affect the value of any of the other parameters.

Results

The "temperature-adjusted" results for mixtures of propyne with propane, propene, and propadiene are shown in Tables 2-4 along with the liquid phase compositions determined by the material balance. After parameters were fit to the model the same binary systems (without impurities) were predicted with bubble point calculations across the composition range. Tables 5-7 show the results from those calculations.

Figures 2-4 show the deviations from Raoult's law of both the results and fitted model. Figure 4 is not very useful for comparing the model's fit of the experimental data because the effects of the butane impurity in the propadiene are noticeable. This figure shows the differ-

Table 7. Calculated Liquid and Vapor Mole Fractions x_1 and y_1 , Pressure, Liquid Molar Volume V^1 , Vapor Compressibility Z, and Relative Volatility α for Propadiene (1) + Propyne (2)

Compre	29910111	ty Z, at	u meran	ve volatility u		paurene	$(1) \pm 1$ FO	hàue (<i>(11</i>)				
T/K	x_1	y 1	P/kPa	$V^{1/(cm^{3} mol^{-1})}$	Z	α	T/K	x_1	y_1	P/kPa	$V^{1/(cm^{3} mol^{-1})}$	Z	α
253.15	0.00	0.000	115.56	59.9	0.950	1.855	328.15	0.00	0.000	1279.18	71.4	0.813	1.343
253.15	0.05	0.088	120.66	60.1	0.949	1.831	328.15	0.05	0.065	1306.76	71.6	0.810	1.329
253.15	0.10	0.167	125.55	60.2	0.949	1.806	328.15	0.10	0.128	1333.24	71.7	0.808	1.316
253.15	0.15	0.239	130.31	60.3	0.948	1.780	328.15	0.15	0.187	1358.61	71.9	0.806	1.303
253.15	0.20	0.305	134.86	60.4	0.948	1.754	328.15	0.20	0.244	1382.95	72.0	0.803	1.289
253.15	0.25	0.366	139.21	60.5	0.947	1.728	328.15	0.25	0.299	1406.32	72.2	0.801	1.277
253.15	0.30	0.422	143.41	60.6	0.947	1.701	328.15	0.30	0.351	1428.73	72.3	0.799	1.264
253.15	0.35	0.474	147.48	60.7	0.947	1.674	328.15	0.35	0.403	1450.24	72.4	0.797	1.251
253.15	0.40	0.523	151.34	60.8	0.946	1.647	328.15	0.40	0.452	1470.86	72.6	0.795	1.239
253.15	0.45	0.570	155.06	60.8	0.946	1.619	328.15	0.45	0.501	1490.65	72.7	0.793	1.227
253.15	0.50	0.614	158.65	60.9	0.946	1.591	328.15	0.50	0.549	1509.61	72.8	0.792	1.215
253.15	0.55	0.656	162.10	60.9	0.945	1.562	328.15	0.55	0.595	1527.74	72.8	0.790	1.204
203.10	0.60	0.697	100.41	60.9	0.945	1.534	328.10	0.60	0.641	1545.05	72.9	0.789	1.192
200.10	0.00	0.737	100.00	60.9	0.945	1.000	328.13 200.15	0.65	0.007	1501.00	73.0	0.786	1.101
200.10	0.70	0.770	174.59	60.9	0.945	1.475	320.10	0.70	0.732	1502 /8	73.0	0.700	1.170
253 15	0.75	0.813	177.33	60.9	0.945	1.440	328.15	0.75	0.777	1606 75	73.1	0.784	1.135
253.15	0.85	0.887	180.02	60.9	0.045	1.386	328.15	0.85	0.866	1620.34	73.1	0.783	1 1 37
253 15	0.00	0.924	182.64	60.8	0.945	1.356	328 15	0.00	0.910	1633.09	73.1	0.782	1 1 27
253.15	0.95	0.962	185.06	60.8	0.945	1.326	328.15	0.95	0.955	1645.09	73.1	0.781	1.117
253.15	1.00	1.000	187.40	60.8	0.945	1.296	328.15	1.00	1.000	1656.33	73.1	0.780	1.107
278.15	0.00	0.000	302.54	63.0	0.917	1.625	353.15	0.00	0.000	2239.69	78.5	0.717	1.247
278.15	0.05	0.078	312.75	63.1	0.916	1.605	353.15	0.05	0.061	2280.58	78.8	0.713	1.233
278.15	0.10	0.150	322.54	63.2	0.915	1.586	353.15	0.10	0.119	2319.33	79.0	0.710	1.220
278.15	0.15	0.217	331.98	63.3	0.914	1.566	353.15	0.15	0.176	2356.15	79.2	0.706	1.207
278.15	0.20	0.279	341.01	63.4	0.913	1.546	353.15	0.20	0.230	2391.10	79.4	0.703	1.196
278.15	0.25	0.337	349.77	63.5	0.912	1.525	353.15	0.25	0.283	2424.40	79.6	0.700	1.185
278.15	0.30	0.392	358.18	63.6	0.911	1.505	353.15	0.30	0.335	2456.12	79.8	0.697	1.174
278.15	0.35	0.444	366.18	63.6	0.910	1.484	353.15	0.35	0.385	2486.46	79.9	0.694	1.164
278.15	0.40	0.494	373.97	63.7	0.910	1.464	353.15	0.40	0.435	2515.41	80.0	0.691	1.155
278.15	0.45	0.541	381.35	63.7	0.909	1.443	353.15	0.45	0.484	2543.20	80.1	0.689	1.147
278.15	0.50	0.587	388.02	63.8 63.8	0.908	1.422	303.10 252.15	0.50	0.532	2009.81	80.2	0.680	1.139
278.10	0.55	0.631	393.33 401.00	63.8	0.908	1.401	353 15	0.55	0.000	2090.02	80.3	0.004	1.101
278.15	0.00	0.074	401.50	63.8	0.907	1.358	353 15	0.65	0.625	2613.67	80.3	0.082	1 1 1 1 8
278.15	0.05	0.710	414 17	63.8	0.906	1.337	353 15	0.00	0.722	2666 13	80.4	0.678	1 1 1 2
278.15	0.75	0.798	419.96	63.8	0.906	1.315	353.15	0.75	0.769	2688.06	80.5	0.676	1.106
278.15	0.80	0.838	425.41	63.8	0.906	1.293	353.15	0.80	0.815	2709.23	80.5	0.674	1.101
278.15	0.85	0.878	430.58	63.8	0.905	1.271	353.15	0.85	0.861	2729.63	80.5	0.672	1.097
278.15	0.90	0.918	435.54	63.7	0.905	1.248	353.15	0.90	0.908	2749.49	80.5	0.670	1.092
278.15	0.95	0.959	440.16	63.7	0.905	1.226	353.15	0.95	0.954	2768.73	80.5	0.669	1.088
278.15	1.00	1.000	444.50	63.6	0.905	1.203	353.15	1.00	1.000	2787.41	80.6	0.667	1.085
303.15	0.00	0.000	663.69	66.6	0.874	1.460							
303.15	0.05	0.071	681.20	66.7	0.872	1.445							
303.15	0.10	0.137	698.09	66.8	0.871	1.430							
303.15	0.15	0.200	714.37	67.0	0.869	1.415							
303.15	0.20	0.259	730.02	67.1	0.868	1.400							
303.10	0.20	0.310	740.12	67.2	0.800	1.384							
202.10	0.30	0.370	709.00	67.0	0.000	1.309							
303.15	0.33	0.422	786.97	67.4	0.862	1.338							
303 15	0.40	0.520	799 79	67.5	0.861	1.322							
303.15	0.50	0.566	812.13	67.6	0.860	1,306							
303.15	0.55	0.612	823.99	67.6	0.859	1.290							
303.15	0.60	0.657	835.30	67.7	0.858	1.274							
303.15	0.65	0.700	846.06	67.7	0.857	1.258							
303.15	0.70	0.744	856.33	67.7	0.856	1.242							
303.15	0.75	0.786	866.12	67.8	0.856	1.226							
303.15	0.80	0.829	875.43	67.8	0.855	1.209							
303.15	0.85	0.871	884.18	67.7	0.855	1.193							
303.15	0.90	0.914	892.39	67.7	0.854	1.176							
303.15	0.95	0.957	900.11	67.7 67.7	0.854	1.159							
303.15	1.00	1.000	907.ZI	07.7	U.804	1.142							

ences in the deviations from Raoult's law of the fitted model for the binary propadiene + propyne system with those of the experimental ternary propadiene + propyne + butane system. The butane + propadiene and butane + propyne interactions were estimated to be equal to the propane + propadiene interactions as measured by Burcham (1981, 1986) assuming a similar alkane + diolefin interaction. These interactions caused an additional 0.5% maximum deviation in the experimental propadiene + propyne results. Since these interactions were estimated, the results for the propadiene + propyne binary system have additional uncertainty.

Although the identity of the propadiene impurities was determined to be different from that reported by Burcham (1986), which changed the values for the pure component vapor pressures, it was not observed to have a large effect in either the binary interactions or the relative volatilities.

Figure 4. Comparison of the Raoult's law pressure deviations for experimental data and the model for propadiene (1) + propyne (2): dotted circle, 253.15 K; dotted square, 278.15 K; dotted triangle, 303.15 K; dotted inverted triangle, 328.15 K; dotted tilted square, 353.15 K. The fit appears poor because the prediction is for pure binary mixtures but experimental results have an influence of 3.8 mol % butane from pure propadiene.

Conclusions

An accurate T, P, x_i data set has been reported for the propane + propyne, propene + propyne, and propadiene + propyne systems for the temperature range of 253.15-353.15 K. An equation of state model was used to obtain the liquid and vapor phase compositions. These results should be useful in evaluating the alkyne interactions with alkanes, alkenes, and diolefins of light hydrocarbons.

Literature Cited

Ambrose, D. The Correlation and Estimation of Vapour Pressures IV. Observations on Wagner's Method of Fitting Equations to Vapour Pressures. J. Chem. Thermodyn. 1986, 18, 45-51.

- Barclay, D. A. Relative Volatility of the Ethane-Ethylene System. Ph.D. Dissertation, University of Missouri-Rolla, Rolla, MO, 1980.
- Bondar, A. M.; Mushii, R. Ya.; Kostyuk, V. N.; Moshkovich, F. B. The Conditions for the Explosive Decomposition of Allene. *Khim. Promst.* (*Moscow*) **1965**, *41*, 923–924 (in Russian).
- Burcham, A. F. Vapor Pressures for the Propane-Propadiene System. M.S. Thesis, University of Missouri-Rolla, Rolla, MO, 1981.
- Burcham, A. F.; Trampe, M. D.; Poling, B. E.; Manley, D. B. In Phase Equilibria for the Propane-Propadiene System from Total Pressure Measurements, Equations of State / Theories and Applications; Chao, K. C., Robinson, R. L., Jr., Eds. ACS Symp. Ser. 1986, 300, 86– 107.
- Flebbe, J. L. Vapor Pressures of Some C-4 Hydrocarbons and Their Mixtures. Ph.D. Dissertation, University of Missouri-Rolla, Rolla, MO, 1980.
- Huston, R. F.; Barrios, C. A.; Holleman, R. A. Weathering and Stability of Methylacetylene-Propadiene-Hydrocarbon Mixtures. J. Chem. Eng. Data 1970, 15, 168-173.
- Kuchta, J. M.; Spolan, I.; Zabetakis, M. G. Flammability Characteristics of Methylacetylene, Propadiene (Allene), and Propylene Mixtures. J. Chem. Eng. Data 1964, 9, 467-472.
- Kyser, E. A., III. Experimental Vapor-Liquid Equilibria of Propyne with Propane, Propene and Propadiene. Ph.D. Dissertation, University of Missouri-Rolla, Rolla, MO, 1987.
- Panagiotopoulos, A. Z.; Reid, R. C. Multiphase High Pressure Equilibria in Ternary Aqueous Systems. *Fluid Phase Equilib.* 1986, 29, 525-534.
- Peneloux, A.; Rauzy, E.; Freze, R. A Consistent Correction for Relich-Kwong-Soave Volumes. Fluid Phase Equilib. 1982, 8, 7-23.
- Rutledge, T. F. Acetylenic Compounds; Reinhold Book Corp.: New York, 1968.
- Van Hook, W. A. Vapor Pressures of the Methylacetylenes, H3CCCH, H3CCCD, D3CCH, and D3CCCD. J. Chem. Phys. 1967, 46, 1907– 1918.
- Vidaurri, F. C. Vinyl Acetylene Binary Activity Coefficients with C4unsaturates. J. Chem. Eng. Data 1975, 20, 328-333.
- Yoshimine, M.; Kern, W. G.; Belfit, R. W., Jr. Stabilization of Methylacetylene and Propadiene Mixtures. J. Chem. Eng. Data 1967, 12, 399-405.

Received for review January 24, 1995. Accepted April 20, 1995. JE950027B

[®] Abstract published in Advance ACS Abstracts, June 1, 1995.